Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Virol J ; 20(1): 122, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20245055

ABSTRACT

PURPOSE: Influenza virus (IFV) causes acute respiratory tract infection (ARTI) and leads to high morbidity and mortality annually. This study explored the epidemiological change of IFV after the implementation of the universal two-child policy and evaluated the impact of coronavirus disease 2019 (COVID-19) pandemic on the detection of IFV. METHODS: Hospitalized children under 18 years with ARTI were recruited from Hubei Maternal and Child Healthcare Hospital of Hubei Province from January 2014 to June 2022. The positive rates of IFV were compared among different periods by the implementation of the universal two-child policy and public health measures against COVID-19 pandemic. RESULTS: Among 75,128 hospitalized children with ARTI, the positive rate of IFV was 1.98% (1486/75128, 95% CI 1.88-2.01). Children aged 6-17 years had the highest positive rate of IFV (166/5504, 3.02%, 95% CI 2.58-3.50). The positive rate of IFV dropped to the lowest in 2015, then increased constantly and peaked in 2019. After the universal two-child policy implementation, the positive rate of IFV among all the hospitalized children increased from 0.40% during 2014-2015 to 2.70% during 2017-2019 (RR 6.72, 95% CI 4.94-9.13, P < 0.001), particularly children under one year shown a violent increasing trend from 0.20 to 2.01% (RR 10.26, 95% CI 5.47-19.23, P < 0.001). During the initial outbreak of COVID-19, the positive rate of IFV decreased sharply compared to that before COVID-19 (0.35% vs. 3.37%, RR 0.10, 95% CI 0.04-0.28, P < 0.001), and then rebounded to 0.91%, lower than the level before COVID-19 (RR 0.26, 95% CI 0.20-0.36, P < 0.001). CONCLUSION: IFV epidemiological pattern has changed after the implementation of the universal two-child policy. More attention should be emphasized to comprehend the health benefits generated by COVID-19 restrictions on IFV transmission in future.


Subject(s)
COVID-19 , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Adolescent , Child, Hospitalized , Pandemics , COVID-19/epidemiology , China/epidemiology , Respiratory Tract Infections/epidemiology
2.
Chem Sci ; 14(20): 5386-5395, 2023 May 24.
Article in English | MEDLINE | ID: covidwho-2326993

ABSTRACT

COVID-19 has afflicted people's lives worldwide. Interleukin-6 (IL-6) is an important COVID-19 biomarker in human body fluids that can be used as a reference to monitor COVID-19 in real-time and therefore to reduce the risk of virus transmission. On the other hand, oseltamivir is a potential COVID-19 curing drug, but its overuse easily leads to hazardous side effects, calling for its real time monitoring in body fluids. For these purposes, a new yttrium metal-organic framework (Y-MOF) has been synthesized, in which the 5-(4-(imidazole-1-yl)phenyl)isophthalic linker contains a large aromatic backbone capable of strongly interacting with DNA sequences through π-π stacking interactions, which makes it appealing to build a unique sensor based on DNA functionalized MOFs. The MOF/DNA sequence hybrid luminescent sensing platform presents excellent optical properties associated with a high Förster resonance energy transfer (FRET) efficiency. Furthermore, to construct a dual emission sensing platform, a 5'-carboxylfluorescein (FAM) labeled DNA sequence (S2) with a stem-loop structure that can specifically interact with IL-6 has been associated with the Y-MOF. The resulting Y-MOF@S2 exhibits an efficient ratiometric detection of IL-6 in human body fluids with an extremely high Ksv value 4.3 × 108 M-1 and a low detection limit (LOD) of 70 pM. Finally, the Y-MOF@S2@IL-6 hybrid platform allows the detection of oseltamivir with high sensitivity (Ksv value is as high as 5.6 × 105 M-1 and LOD is 54 nM), due to the fact that oseltamivir can disconnect the loop stem structure constructed by S2, leading to a strong quenching effect towards Y-MOF@S2@IL-6. The nature of the interactions between oseltamivir and Y-MOF has been elucidated using density functional theory calculations while the sensing mechanism for the dual detection of IL-6 and oseltamivir has been deciphered based on luminescence lifetime tests and confocal laser scanning microscopy.

3.
J Neuroinflammation ; 20(1): 110, 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2319603

ABSTRACT

BACKGROUND: Depression and dysosmia have been regarded as primary neurological symptoms in COVID-19 patients, the mechanism of which remains unclear. Current studies have demonstrated that the SARS-CoV-2 envelope (E) protein is a pro-inflammatory factor sensed by Toll-like receptor 2 (TLR2), suggesting the pathological feature of E protein is independent of viral infection. In this study, we aim to ascertain the role of E protein in depression, dysosmia and associated neuroinflammation in the central nervous system (CNS). METHODS: Depression-like behaviors and olfactory function were observed in both female and male mice receiving intracisternal injection of E protein. Immunohistochemistry was applied in conjunction with RT-PCR to evaluate glial activation, blood-brain barrier status and mediators synthesis in the cortex, hippocampus and olfactory bulb. TLR2 was pharmacologically blocked to determine its role in E protein-related depression-like behaviors and dysosmia in mice. RESULTS: Intracisternal injection of E protein evoked depression-like behaviors and dysosmia in both female and male mice. Immunohistochemistry suggested that the E protein upregulated IBA1 and GFAP in the cortex, hippocampus and olfactory bulb, while ZO-1 was downregulated. Moreover, IL-1ß, TNF-α, IL-6, CCL2, MMP2 and CSF1 were upregulated in both cortex and hippocampus, whereas IL-1ß, IL-6 and CCL2 were upregulated in the olfactory bulb. Furtherly, inhibiting microglia, rather than astrocytes, alleviated depression-like behaviors and dysosmia induced by E protein. Finally, RT-PCR and immunohistochemistry suggested that TLR2 was upregulated in the cortex, hippocampus and olfactory bulb, the blocking of which mitigated depression-like behaviors and dysosmia induced by E protein. CONCLUSIONS: Our study demonstrates that envelope protein could directly induce depression-like behaviors, dysosmia, and obvious neuroinflammation in CNS. TLR2 mediated depression-like behaviors and dysosmia induced by envelope protein, which could serve as a promising therapeutic target for neurological manifestation in COVID-19 patients.


Subject(s)
COVID-19 , Olfaction Disorders , Female , Male , Animals , Mice , Depression/etiology , Interleukin-6 , Neuroinflammatory Diseases , SARS-CoV-2 , Toll-Like Receptor 2 , Olfaction Disorders/etiology
4.
JMIR Public Health Surveill ; 9: e43941, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2287825

ABSTRACT

BACKGROUND: Longitudinal studies characterizing the epidemic trend of respiratory syncytial virus (RSV) in Hubei Province are scarce. OBJECTIVE: We aimed to depict the dynamics of the RSV epidemic among hospitalized children with acute respiratory tract infections (ARTIs) during 2014 to 2022 in the Maternal and Child Health Hospital of Hubei Province and investigate the influence of the 2-child policy and the COVID-19 pandemic on RSV prevalence. METHODS: The medical records and testing results of hospitalized children with ARTI from January 2014 to June 2022 were extracted. Nasopharyngeal samples were tested with direct immunofluorescence assay. Detection rates of RSV were categorized according to the diagnosis of patients: (1) overall, (2) upper respiratory tract infection (URTI), and (3) lower respiratory tract infection (LRTI). Poisson regression models were used to investigate the association between RSV detection rate and age, gender, or diagnosis. The detection rates of RSV before and after the implementation of the universal 2-child policy were compared using a Poisson regression model. Multiple comparisons of RSV detection rates were conducted among 3 stages of the COVID-19 pandemic using chi-square tests. Seasonal autoregressive integrated moving average was performed to predict RSV behaviors from February 2020 to June 2020 under the assumption of a non-COVID-19 scenario. RESULTS: Among 75,128 hospitalized children with ARTI, 11.1% (8336/75,128) were RSV-positive. Children aged <1 year had higher detection rates than older children (4204/26,498, 15.9% vs 74/5504, 1.3%; P<.001), and children with LRTI had higher detection rates than children with URTI (7733/53,145, 14.6% vs 603/21,983, 2.7%; P<.001). Among all the children, a clear seasonal pattern of the RSV epidemic was observed before 2021. Most of the highest detection rates were concentrated between December and February. The yearly detection rate of RSV remained at a relatively low level (about 8%) from 2014 to 2017, then increased to 12% and above from 2018. The highest monthly detection rate was in December 2018 (539/1493, 36.1%), and the highest yearly rate was in 2021 (1372/9328, 14.7%). There was a moderate increase in the RSV detection rate after the 2-child policy was implemented (before: 860/10,446, 8.2% vs after: 4920/43,916, 11.2%; P<.001). The largest increase, by 5.83%, occurred in children aged <1 year. The RSV epidemic level decreased sharply in the short term after the COVID-19 outbreak (detection rate before: 1600/17,010, 9.4% vs after: 32/1135, 2.8%; P<.001). The largest decrease, by 12.0%, occurred in children aged <1 year, but a rebounding epidemic occurred after 2020 (680/5744, 11.8%; P<.001). CONCLUSIONS: Children have been experiencing increased prevalence of RSV since 2018 based on surveillance from a hospital in Hubei Province with a large sample size. The 2-child policy might have increased the RSV prevalence, and the COVID-19 epidemic had a temporary inhibitory effect on RSV transmission. Vaccines against RSV are urgently needed.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Child , Adolescent , Respiratory Syncytial Virus Infections/epidemiology , Child, Hospitalized , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Longitudinal Studies , Hospitals , China/epidemiology
5.
Chemistry ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2286183

ABSTRACT

Countless people have been affected by the COVID-19 pandemic on a global scale. Favipiravir, has shown potential as an effective drug for SARS-CoV-2, attracting scientists' attention. However, overuse of Favipiravir easily leads to serious side effects, requiring real-time monitoring in body fluids. Given this, a new lanthanide metal organic framework (MOF) was prepared under solvothermal conditions from either Eu (Eu-MOF or (1)) or Tb (Tb-MOF or (2)) using the highly delocalized imidazoledicarboxylic acid linker H2L (H2L = 5-(4-(imidazol-1-yl) phenyl) isophthalic acid) and could be successfully applied to selective optical detection of Favipiravir. In this MOF framework, the organic linker H2L provides a high excitation energy transfer efficiency that can sensitize luminescence in lanthanides. In addition, through deliberate tuning of Eu/Tb molar ratio and reaction concentration in the lanthanide framework, ratiometric recyclable luminescent EuxTb1-x-MOF nanoparticles with open metal sites have been constructed, which present a high detection sensitivity (Ksv = 1×107 [M-1], detection limit is 4.63 nM) for Favipiravir. The detection mechanism is discussed with the help of Density Functional Theory (DFT) calculations that sheds light over the selective sensing of Favipiravir over other related COVID-19 drug candidates. Finally, to explore the practical application of Favipiravir sensing, MOF based thin films have been used for visual detection of Favipiravir and recycled 5 times.

6.
Cell Host Microbe ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2237104

ABSTRACT

SARS-CoV-2 spread in humans results in continuous emergence of new variants, highlighting the need for vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation-patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x) that contains key regions and residues across multiple SAR-CoV-2 variants. STFK1628x demonstrated high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine composed of STFK and STFK1628x elicited high titers of broad-spectrum neutralizing antibodies to 19 circulating SARS-CoV-2 variants, including Omicron sublineages BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5. Furthermore, this vaccine conferred robust protection against intranasal challenges by either SARS-CoV-2 ancestral strain or immune-evasive Beta and Omicron BA.1. Strikingly, vaccination with the bivalent vaccine in hamsters effectively blocked within-cage virus transmission of ancestral SARS-CoV-2, Beta variant, and Omicron BA.1 to unvaccinated sentinels. Thus, our study provided insight and antigen candidates for the development of next-generation COVID-19 vaccines.

7.
J Ethnopharmacol ; 296: 115472, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-1895183

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu prescription, consisting of 13 Chinese medicines, was formulated by academicians Boli Zhang and Professor Qingquan Liu based on their experience in first-line clinical treatment of COVID-19. Xuanfei Baidu granules (XFBD granules) are a proprietary Chinese medicine preparation developed based on Xuanfei Baidu prescription. It is recommended for the treatment of patients with the common wet toxin and lung stagnation syndrome of COVID-19. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological conditions are unclear. MATERIALS AND METHODS: A rapid and sensitive analytical method, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS), was developed and applied to 24 major bioactive components in normal and ARDS rats after oral administration of XFBD granules. We studied the metabolic process of XFBD granules in vivo to compare the differences in pharmacokinetic parameters between normal and model metabolic processes. RESULTS: This method was successfully applied to the pharmacokinetic investigation of 24 major components of XFBD granules following oral administration in normal and ARDS rats. Eight components, including ephedrine and amygdalin, were more highly absorbed and had shorter Tmax values than the model group; the absorption of six components, such as rhein, decreased in ARDS rats, and there was no significant difference in the absorption of ten components, such as verbenalin and naringin, between the normal and ARDS rats. The results showed that the peak times of other analytes were very short, and 80% of these target constituents were eliminated in both normal and ARDS rats within 6 h except for liquiritigenin and 18ß-glycyrrhetinic acid. CONCLUSIONS: In this study, a rapid and sensitive UPLC-MS/MS analytical method was developed and applied to 24 major bioactive components in normal and ARDS rats after the oral administration of XFBD granules. This will serve to form the basis for further studies on the pharmacokinetic-pharmacodynamic correlation of XFBD granules.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Respiratory Distress Syndrome , Administration, Oral , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods
8.
Curr Drug Metab ; 23(2): 150-163, 2022.
Article in English | MEDLINE | ID: covidwho-1690552

ABSTRACT

BACKGROUND: Xuanfei Baidu granules (XFBD granules) are based on the prescription of Xuanfei Baidu, which showed promise as a first-line treatment against Corona Virus Disease 2019 (COVID-19) in Wuhan, Hubei. On March 2, 2021, XFBD granules were marketed as a novel drug for epidemic diseases. However, there is little information about the pharmacokinetics and tissue distribution of the main constituents in XFBD granules. METHODS: A sensitive analytical method was developed for detecting the marker components of XFBD granules by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOFMS/ MS), and for studying its pharmacokinetics and tissue distribution by UPLC-QDa. RESULTS: Following an oral administration of a single granule in experimental rats at a dose of 14 g/kg for pharmacokinetic and tissue distribution studies, 42 compounds and nine analytes were identified in XFBD granules. Nine compounds were detected in the lungs and the liver of the rats. Six compounds were detected in the kidneys. Five compounds were detected in the spleen and three were detected in the heart. As it went undetected in the brain, XFBD granules are considered unable to cross the blood-brain barrier. CONCLUSION: A sensitive UPLC-Q-TOF-MS/MS method was established and validated for the quantification of nine components in rat plasma and tissue samples. This method was successfully applied to study the pharmacokinetics and tissue distribution profiles of XFBD granules after their oral administration.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Administration, Oral , Animals , Drugs, Chinese Herbal/pharmacokinetics , Humans , Rats , Tandem Mass Spectrometry/methods , Tissue Distribution
9.
Antioxidants (Basel) ; 10(11)2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1533751

ABSTRACT

To investigate the structure of Arthrospira platensis polysaccharide (PAP) (intracellular polysaccharide) and the antioxidant activity of the first component of PAP (PAP-1) on pseudorabies virus (PRV) -infected RAW264.7 cells. The PAP was separated and purified by the Cellulose DE-52 chromatography column and Sephacryl S-200 high-resolution gel column to obtain PAP-1. The antioxidant activity and regulation of PAP-1 on PRV-infected RAW264.7 cells of circRNA-miRNA-mRNA network were investigated by chemical kit, Q-PCR, and ce-RNA seq. The results indicated that the molecular weight (Mw) of PAP-1, which was mainly composed of glucose and eight other monosaccharides, was 1.48 × 106 Da. The main glycosidic bond structure of PAP-1 was →4)-α-D-Glcp-(1→. PAP-1 may be increased the antioxidant capacity by regulating the circRNA-miRNA-mRNA network in PRV-infected RAW264.7 cells. This study provided a scientific foundation for further exploring the antioxidant activity of PAP-1 based on its structure.

11.
PeerJ ; 9: e11397, 2021.
Article in English | MEDLINE | ID: covidwho-1359402

ABSTRACT

BACKGROUND: Air pollution leads to many adverse health conditions, mainly manifested by respiratory or cardiac symptoms. Previous studies are limited as to whether air pollutants were associated to influenza-like illness (ILI). This study aimed to explore the association between air pollutants and outpatient visits for ILI, especially during an outbreak of influenza. METHODS: Daily counts of hospital visits for ILI were obtained from Peking University Third Hospital between January 1, 2015, and March 31, 2018. A generalized additive Poisson model was applied to examine the associations between air pollutants concentrations and daily outpatient visits for ILI when adjusted for the meteorological parameters. RESULTS: There were 35862 outpatient visits at the fever clinic for ILI cases. Air quality index (AQI), PM2.5, PM10, CO and O3 on lag0 days, as well as nitrogen dioxide (NO2) and sulfur dioxide (SO2) on lag1 days, were significantly associated with an increased risk of outpatient visits for ILI from January 2015 to November 2017. From December 2017 to March 2018, on lag0 days, air pollutants PM2.5 [risk ratio (RR) = 0.971, 95% CI: 0.963-0.979], SO2 (RR = 0.892, 95% CI: 0.840-0.948) and CO (RR = 0.306, 95% CI: 0.153-0.612) were significantly associated with a decreased risk of outpatient visits for ILI. Interestingly, on the lag2 days, all the pollutants were significantly associated with a reduced risk of outpatient visits for ILI except for O3. We did not observe the linear correlations between the outpatient visits for ILI and any of air pollutants, which were instead associated via a curvilinear relationship. CONCLUSIONS: We found that the air pollutants may be associated with an increased risk of outpatient visits for ILI during the non-outbreak period and with a decreased risk during the outbreak period, which may be linked with the use of disposable face masks and the change of outdoor activities. These findings expand the current knowledge of ILI outpatient visits correlated with air pollutants during an influenza pandemic.

12.
Emerg Microbes Infect ; 9(1): 1974-1983, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-714084

ABSTRACT

Dynamic changes of RNA and antibodies in SARS-CoV-2 infected patients remain largely unknown, and influence factors for antibody production have not been fully clarified. In this study, consecutive throat swabs specimens (n = 1875) from 187 patients were collected to analyse the dynamic changes of RNA. Moreover, 162 serial serum samples from 31 patients were tested for seroconversion of IgM and IgG. Meanwhile, IgM and IgG were also detected in 409 COVID-19 patients and 389 controls. Additionally, the logistic regression analysis was executed to identify the possible influence factors for antibody production. The median positive conversion time for RNA was day 7 (IQR, 3-11), and the positive rate was highest in day 1-5 (74.59 %) and then gradually decreased. The median time of seroconversion for IgM and IgG were both day 12 (IQR, 10-15). The sensitivity and specificity for IgM (or IgG) was 87.04% and 96.92%, respectively. Multivariate logistic regression indicated that reduced lymphocytes and short positive conversion time for SARS-CoV-2 RNA were independent factors for negative results of IgM and IgG. In conclusion, RNA and antibodies should be combined for COVID-19 diagnosis, and delayed seroconversion was influenced by the decreased lymphocytes and short positive conversion time for RNA.


Subject(s)
Antibodies, Viral/blood , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/isolation & purification , Aged , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics , Pharynx/virology , RNA, Viral/genetics , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion
SELECTION OF CITATIONS
SEARCH DETAIL